Calculation and Visualization of Atomistic Mechanical Stresses in Nanomaterials and Biomolecules
نویسندگان
چکیده
Many biomolecules have machine-like functions, and accordingly are discussed in terms of mechanical properties like force and motion. However, the concept of stress, a mechanical property that is of fundamental importance in the study of macroscopic mechanics, is not commonly applied in the biomolecular context. We anticipate that microscopical stress analyses of biomolecules and nanomaterials will provide useful mechanistic insights and help guide molecular design. To enable such applications, we have developed Calculator of Atomistic Mechanical Stress (CAMS), an open-source software package for computing atomic resolution stresses from molecular dynamics (MD) simulations. The software also enables decomposition of stress into contributions from bonded, nonbonded and Generalized Born potential terms. CAMS reads GROMACS topology and trajectory files, which are easily generated from AMBER files as well; and time-varying stresses may be animated and visualized in the VMD viewer. Here, we review relevant theory and present illustrative applications.
منابع مشابه
Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model
In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...
متن کاملMultiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation
This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...
متن کاملPattern of Residual Stress in Rail by FEM Analysis and Strain Gage Sectioning Technique
Final step of rail manufacturing is cold rolling straightening process and it hassignificant effects on mechanical properties, straightness, flatness and development of residualstresses. Measurement of residual stresses after straightening process is obligated by railmanufacturing standards. In the present investigation, an attempt has been made to evaluateresidual stresses after straightening ...
متن کاملA Surface Cauchy-Born model for silicon nanostructures
We present a Surface Cauchy-Born approach to modeling non-centrosymmetric, semiconducting nanostructures such as silicon that exist in a diamond cubic lattice structure. The model is based on an extension to the standard Cauchy-Born theory in which a surface energy term that is obtained from the underlying crystal structure and governing interatomic potential is used to augment the bulk energy....
متن کاملEvaluating the coupled thermo-mechanical stresses for an aluminum alloy piston used in a gasoline engine XU7
In modern engines with higher compression ratios, severe pressures and non-uniform heating up is occurred for the engine parts. The piston as the most critical part among all automotive components has been the subject of numerous studies on calculation of temperature distribution, but thermal stress analyses are limited. In this study, the piston of gasoline engine XU7 which is widespread in Ir...
متن کامل